Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742389

RESUMO

Correction for 'α-Fe2O3/TiO2 3D hierarchical nanostructures for enhanced photoelectrochemical water splitting' by Hyungkyu Han et al., Nanoscale, 2017, 9, 134-142, https://doi.org/10.1039/C6NR06908H.

2.
Adv Mater ; : e2400626, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520245

RESUMO

The employment of single atoms (SAs), especially Pt SAs, as co-catalysts in photocatalytic H2 generation has gained significant attention due to their exceptional efficiency. However, a major challenge in their application is the light-induced agglomeration of these SAs into less active nanosized particles under photocatalytic conditions. This study addresses the stability and reactivity of Pt SAs on TiO2 surfaces by investigating various post-deposition annealing treatments in air, Ar, and Ar-H2 environments at different temperatures. It is described that annealing in an Ar-H2 atmosphere optimally stabilizes SA configurations, forming stable 2D rafts of assembled SAs ≈0.5-1 nm in diameter. These rafts not only resist light-induced agglomeration but also exhibit significantly enhanced H2 production efficiency. The findings reveal a promising approach to maintaining the high reactivity of Pt SAs while overcoming the critical challenge of their stability under photocatalytic conditions.

3.
Angew Chem Int Ed Engl ; 63(10): e202316660, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38237060

RESUMO

When using single atoms (SAs) as a co-catalyst in photocatalytic H2 generation, achieving a well-dispersed, evenly distributed and adjustable SA surface density on a semiconductor surface is a challenging task. In the present work we use the planar adsorption of tetrakis-(4-carboxyphenyl)-porphyrin (TCPP) and its platinum coordinated analogue, Pt-TCPP, onto anatase TiO2 surfaces to establish a spatially controlled decoration of SAs. We show that the surface Pt SA density can be very well controlled by co-adsorption of Pt-TCPP and TCPP in the planar monolayer regime, and by adjusting the Pt-TCPP to TCPP ratio a desired well dispersed surface density of SAs up to 2.6×105  atoms µm-2 can be established (which is the most effective Pt SA loading for photocatalysis). This distribution and the SA state are maintained after a thermal treatment in air, and an optimized SA density as well as a most active form of Pt for photocatalytic H2 evolution can be established and maintained.

4.
5.
ACS Appl Mater Interfaces ; 16(4): 4430-4438, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232230

RESUMO

Anodic titanium dioxide (TiO2) nanostructures, i.e., obtained by electrochemical anodization, have excellent control over the nanoscale morphology and have been extensively investigated in biomedical applications owing to their sub-100 nm nanoscale topography range and beneficial effects on biocompatibility and cell interactions. Herein, we obtain TiO2 nanopores (NPs) and nanotubes (NTs) with similar morphologies, namely, 15 nm diameter and 500 nm length, and investigate their characteristics and impact on stem cell adhesion. We show that the transition of TiO2 NPs to NTs occurs via a pore/wall splitting mechanism and the removal of the fluoride-rich layer. Furthermore, in contrast to the case of NPs, we observe increased cell adhesion and proliferation on nanotubes. The enhanced mesenchymal stem cell adhesion/proliferation seems to be related to a 3-fold increase in activated integrin clustering, as confirmed by immunogold labeling with ß1 integrin antibody on the nanostructured layers. Moreover, computations of the electric field and surface charge density show increased values at the inner and outer sharp edges of the top surfaces of the NTs, which in turn can influence cell adhesion by increasing the bridging interactions mediated by proteins and molecules in the environment. Collectively, our results indicate that the nanoscale surface architecture of the lateral spacing topography can greatly influence stem cell adhesion on substrates for biomedical applications.


Assuntos
Nanoporos , Nanotubos , Propriedades de Superfície , Nanotubos/química , Comunicação Celular , Adesão Celular , Titânio/química
6.
Angew Chem Int Ed Engl ; 63(7): e202319255, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38157446

RESUMO

In this report, a 2D MOF nanosheet derived Pd single-atom catalyst, denoted as Pd-MOF, was fabricated and examined for visible light photocatalytic hydrogen evolution reaction (HER). This Pd-MOF can provide a remarkable photocatalytic activity (a H2 production rate of 21.3 mmol/gh in the visible range), which outperforms recently reported Pt-MOFs (with a H2 production rate of 6.6 mmol/gh) with a similar noble metal loading. Notably, this high efficiency of Pd-MOF is not due to different chemical environment of the metal center, nor by changes in the spectral light absorption. The higher performance of the Pd-MOF in comparison to the analogue Pt-MOF is attributed to the longer lifetime of the photogenerated electron-hole pairs and higher charge transfer efficiency.

7.
ChemistryOpen ; : e202300185, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38088583

RESUMO

Titanium dioxide (TiO2 ) is the material of choice for photocatalytic and electrochemical applications owing to its outstanding physicochemical properties. However, its wide bandgap and relatively low conductivity limit its practical application. Modifying TiO2 with carbon species is a promising route to overcome these intrinsic complexities. In this work, we propose a facile method to modify TiO2 nanotubes (NTs) based on the remnant organic electrolyte retained inside the nanotubes after the anodization process, that is, without removing it by immersion in ethanol. Carbon-modified TiO2 NTs (C-TiO2 NTs) showed enhanced H2 evolution in photocatalysis under UV illumination in aqueous solutions. When the C-TiO2 NTs were subjected to UV light illumination, the carbon underwent modification, resulting in higher measured photocurrents in the tube layers. After UV illumination, the IPCE of the C-TiO2 NTs was 4.4-fold higher than that of the carbon-free TiO2 NTs.

8.
J Am Chem Soc ; 145(48): 26122-26132, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37984877

RESUMO

Decoration of semiconductor photocatalysts with cocatalysts is generally done by a step-by-step assembly process. Here, we describe the self-assembling and self-activating nature of a photocatalytic system that forms under illumination of reduced anatase TiO2 nanoparticles in an aqueous Ni2+ solution. UV illumination creates in situ a Ni+/TiO2/Ti3+ photocatalyst that self-activates and, over time, produces H2 at a higher rate. In situ X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy show that key to self-assembly and self-activation is the light-induced formation of defects in the semiconductor, which enables the formation of monovalent nickel (Ni+) surface states. Metallic nickel states, i.e., Ni0, do not form under the dark (resting state) or under illumination (active state). Once the catalyst is assembled, the Ni+ surface states act as electron relay for electron transfer to form H2 from water, in the absence of sacrificial species or noble metal cocatalysts.

9.
Nat Mater ; 22(12): 1548-1555, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37723337

RESUMO

Aerophilic surfaces immersed underwater trap films of air known as plastrons. Plastrons have typically been considered impractical for underwater engineering applications due to their metastable performance. Here, we describe aerophilic titanium alloy (Ti) surfaces with extended plastron lifetimes that are conserved for months underwater. Long-term stability is achieved by the formation of highly rough hierarchically structured surfaces via electrochemical anodization combined with a low-surface-energy coating produced by a fluorinated surfactant. Aerophilic Ti surfaces drastically reduce blood adhesion and, when submerged in water, prevent adhesion of bacteria and marine organisms such as barnacles and mussels. Overall, we demonstrate a general strategy to achieve the long-term stability of plastrons on aerophilic surfaces for previously unattainable underwater applications.

10.
Small ; 19(43): e2303306, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37357164

RESUMO

In the present work, the spontaneous dewetting of thin Au layers on single crystalline anatase nanosheets into narrow-disperse Au nanoparticles is investigated. Patterns of the Au particles can be formed on the main facets of anatase that provide a high co-catalytic activity for photocatalytic generation of H2 . Dewetting is distinctly influenced by the respective facets (001) and (101), the deposit thickness, and secondary thermal dewetting, but most strongly by the surface termination of the nanosheets. Fluoride termination not only leads to an enhanced Au-phobic behavior but strongly affects the co-catalytic activity for photocatalytic generation of H2 . While fluoride termination with or without Au decoration is detrimental for hole transfer, the interplay of the Au co-catalyst and surface fluoride yields highly beneficial effect for electron transfer. This results in a three-times higher photocatalytic H2 production for the F-terminated surface. The findings suggest that dewetting of Au on surface fluorinated TiO2 is an effective way to modulate surface dewetting and achieve a strongly enhanced photocatalytic activity.

11.
ACS Appl Mater Interfaces ; 15(26): 31459-31469, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37341465

RESUMO

Efficient cathodes for the hydrogen evolution reaction (HER) in acidic water electrolysis rely on the use of expensive platinum group metals (PGMs). However, to achieve economically viable operation, both the content of PGMs must be reduced and their intrinsically strong H adsorption mitigated. Herein, we show that the surface effects of hydrogenated TiO2 nanotube (TNT) arrays can make osmium, a so far less-explored PGM, a highly active HER electrocatalyst. These defect-rich TiO2 nanostructures provide an interactive scaffold for the galvanic deposition of Os particles with modulated adsorption properties. Through systematic investigations, we identify the synthesis conditions (OsCl3 concentration/temperature/reaction time) that yield a progressive improvement in Os deposition rate and mass loading, thereby decreasing the HER overpotential. At the same time, the Os particles deposited by this procedure remain mainly sub-nanometric and entirely cover the inner tube walls. An optimally balanced Os@TNT composite prepared at 3 mM/55 °C/30 min exhibits a record low overpotential (η) of 61 mV at a current density of 100 mA cm-2, a high mass activity of 20.8 A mgOs-1 at 80 mV, and a stable performance in an acidic medium. Density functional theory calculations indicate the existence of strong interactions between the hydrogenated TiO2 surface and small Os clusters, which may weaken the Os-H* binding strength and thus boost the intrinsic HER activity of Os centers. The results presented in this study offer new directions for the fabrication of cost-effective PGM-based catalysts and a better understanding of the synergistic electronic interactions at the PGM|TiO2 interface.

12.
ACS Appl Mater Interfaces ; 15(26): 31776-31786, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37348845

RESUMO

Wetting of solid surfaces is crucial for biological and industrial processes but is also associated with several harmful phenomena such as biofouling and corrosion that limit the effectiveness of various technologies in aquatic environments. Despite extensive research, these challenges remain critical today. Recently, we have developed a facile UV-grafting technique to covalently attach silicone-based coatings to solid substrates. In this study, the grafting process was evaluated as a function of UV exposure time on aluminum substrates. While short-time exposure to UV light results in the formation of lubricant-infused slippery surfaces (LISS), a flat, nonporous variant of slippery liquid-infused porous surfaces, longer exposure leads to the formation of semi-rigid cross-linked polydimethylsiloxane (PDMS) coatings, both covalently bound to the substrate. These coatings were exposed to aquatic media to evaluate their resistance to corrosion and biofouling. While the UV-grafted cross-linked PDMS coating effectively inhibits aluminum corrosion in aquatic environments and allows organisms to grow on the surface, the LISS coating demonstrates improved corrosion resistance but inhibits biofilm adhesion. The synergy between facile and low-cost fabrication, rapid binding kinetics, eco-friendliness, and nontoxicity of the applied materials to aquatic life combined with excellent wetting-repellent characteristics make this technology applicable for implementation in aquatic environments.

13.
Adv Mater ; 35(32): e2211814, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37256585

RESUMO

In recent years, the use of single atoms (SAs) has become of a rapidly increasing significance in photocatalytic H2 generation; here SA noble metals (mainly Pt SAs) can act as highly effective co-catalysts. The classic strategy to decorate oxide semiconductor surfaces with maximally dispersed SAs relies on "strong electrostatic adsorption" (SEA) of suitable noble metal complexes. In the case of TiO2 - the classic benchmark photocatalyst - SEA calls for adsorption of cationic Pt complexes such as [(NH3 )4 Pt]2+ which then are thermally reacted to surface-bound SAs. While SEA is widely used in literature, in the present work it is shown by a direct comparison that reactive attachment based on the reductive anchoring of SAs, e.g., from hexachloroplatinic(IV) acid (H2 PtCl6 ) leads directly to SAs in a configuration with a significantly higher specific activity than SAs deposited with SEA - and this at a significantly lower Pt loading and without any thermal post-deposition treatments. Overall, the work demonstrates that the reactive deposition strategy is superior to the classic SEA concept as it provides a direct electronically well-connected SA-anchoring and thus leads to highly active single-atom sites in photocatalysis.

14.
Adv Mater ; 35(5): e2206569, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36373557

RESUMO

With recent advances in the field of single-atoms (SAs) used in photocatalysis, an unprecedented performance of atomically dispersed co-catalysts has been achieved. However, the stability and agglomeration of SA co-catalysts on the semiconductor surface may represent a critical issue in potential applications. Here, the photoinduced destabilization of Pt SAs on the benchmark photocatalyst, TiO2 , is described. In aqueous solutions within illumination timescales ranging from few minutes to several hours, light-induced agglomeration of Pt SAs to ensembles (dimers, multimers) and finally nanoparticles takes place. The kinetics critically depends on the presence of sacrificial hole scavengers and the used light intensity. Density-functional theory calculations attribute the light induced destabilization of the SA Pt species to binding of surface-coordinated Pt with solution-hydrogen (adsorbed H atoms), which consequently weakens the Pt SA bonding to the TiO2 surface. Despite the gradual aggregation of Pt SAs into surface clusters and their overall reduction to metallic state, which involves >90% of Pt SAs, the overall photocatalytic H2 evolution remains virtually unaffected.

15.
J Funct Biomater ; 13(4)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36547533

RESUMO

In the last few years, the progress made in the field of nanotechnology has allowed researchers to develop and synthesize nanosized materials with unique physicochemical characteristics, suitable for various biomedical applications. Amongst these nanomaterials, metal oxide nanoparticles (MONPs) have gained increasing interest due to their excellent properties, which to a great extent differ from their bulk counterpart. However, despite such positive advantages, a substantial body of literature reports on their cytotoxic effects, which are directly correlated to the nanoparticles' physicochemical properties, therefore, better control over the synthetic parameters will not only lead to favorable surface characteristics but may also increase biocompatibility and consequently lower cytotoxicity. Taking into consideration the enormous biomedical potential of MONPs, the present review will discuss the most recent developments in this field referring mainly to synthesis methods, physical and chemical characterization and biological effects, including the pro-regenerative and antitumor potentials as well as antibacterial activity. Moreover, the last section of the review will tackle the pressing issue of the toxic effects of MONPs on various tissues/organs and cell lines.

16.
ACS Omega ; 7(39): 35109-35117, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36211042

RESUMO

In this article, we report a simple ex situ Sn-doping method on hematite nanoflakes (coded as MSnO2-H) that can protect the nanoflake (NF) morphology against the 800 °C high-temperature annealing process and activate the photoresponse of hematite until 800 nm wavelength excitation. MSnO2-H has been fabricated by dropping SnCl4 ethanol solution on hematite nanoflakes homogeneously grown over the conductive FTO glass substrate and annealed at 500 °C to synthesize the SnO2 nanoparticles on hematite NFs. The Sn-treated samples were then placed in a furnace again, and the sintering process was conducted at 800 °C for 15 min. During this step, structure deformation of hematite occurs normally due to the grain boundary motion and oriented attachment. However, in the case of MSnO2-H, the outer SnO2 nanoparticles efficiently prevented a shape deformation and maintained the nanoflake shape owing to the encapsulation of hematite NFs. Furthermore, the interface of hematite/SnO2 nanoparticles became the spots for a heavy Sn ion doping. We demonstrated the generation of the newly localized states, resulting in an extension of the photoresponse of hematite until 800 nm wavelength light irradiation. Furthermore, we demonstrated that SnO2 nanoparticles can effectively act as a passivation layer, which can reduce the onset potential of hematite for water splitting redox reactions. The optimized MSnO2-H nanostructures showed a 2.84 times higher photocurrent density and 300 mV reduced onset potential compared with a pristine hematite nanoflake photoanode.

17.
ACS Appl Mater Interfaces ; 14(25): 29386-29397, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35696316

RESUMO

Wetting of surfaces plays a vital role in many biological and industrial processes. There are several phenomena closely related to wetting such as biofouling and corrosion that cause the deterioration of materials, while the efforts to prevent the degradation of surface functionality have spread over several millennia. Antifouling coatings have been developed to prevent/delay both corrosion and biofouling, but the problems remain unsolved, influencing the everyday life of the modern society in terms of safety and expenses. In this study, liquid-infused slippery surfaces (LISSs), a recently developed nontoxic repellent technology, that is, a flat variation of omniphobic slippery liquid-infused porous surfaces (SLIPSs), were studied for their anti-corrosion and marine anti-biofouling characteristics on metallic substrates under damaged and plain undamaged conditions. Austenitic stainless steel was chosen as a model due to its wide application in aquatic environments. Our LISS coating effectively prevents biofouling adhesion and decays corrosion of metallic surfaces even if they are severely damaged. The mechanically robust LISS reported in this study significantly extends the SLIPS technology, prompting their application in the marine environment due to the synergy between the facile fabrication process, rapid binding kinetics, nontoxic, ecofriendly, and low-cost applied materials together with excellent repellent characteristics.

18.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408918

RESUMO

With the introduction of a new interdisciplinary field, osteoimmunology, today, it is well acknowledged that biomaterial-induced inflammation is modulated by immune cells, primarily macrophages, and can be controlled by nanotopographical cues. Recent studies have investigated the effect of surface properties in modulating the immune reaction, and literature data indicate that various surface cues can dictate both the immune response and bone tissue repair. In this context, the purpose of the present study was to investigate the effects of titanium dioxide nanotube (TNT) interspacing on the response of the macrophage-like cell line RAW 264.7. The cells were maintained in contact with the surfaces of flat titanium (Ti) and anodic TNTs with an intertube spacing of 20 nm (TNT20) and 80 nm (TNT80), under standard or pro-inflammatory conditions. The results revealed that nanotube interspacing can influence macrophage response in terms of cell survival and proliferation, cellular morphology and polarization, cytokine/chemokine expression, and foreign body reaction. While the nanostructured topography did not tune the macrophages' differentiation into osteoclasts, this behavior was significantly reduced as compared to flat Ti surface. Overall, this study provides a new insight into how nanotubes' morphological features, particularly intertube spacing, could affect macrophage behavior.


Assuntos
Nanotubos , Titânio , Macrófagos/metabolismo , Propriedades de Superfície , Titânio/metabolismo , Titânio/farmacologia
19.
ChemistryOpen ; 11(3): e202200010, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35112801

RESUMO

Titanium dioxide (TiO2 ) and, in particular, its anatase polymorph, is widely studied for photocatalytic H2 production. In the present work, we examine the importance of reactive facets of anatase crystallites on the photocatalytic H2 evolution from aqueous methanol solutions. For this, we synthesized anatase TiO2 nanocrystals with a large amount of either {001} facets, that is, nanosheets, or {101} facets, that is, octahedral nanocubes, and examined their photocatalytic H2 evolution and then repeated this procedure with samples where Pt co-catalyst is present on all facets. Octahedral nanocubes with abundant {101} facets produce >4 times more H2 than nanosheets enriched in {001} facets if the reaction is carried out under co-catalyst-free conditions. For samples that carry Pt co-catalyst on both {001} and {101} facets, faceting loses entirely its significance. This demonstrates that the beneficial role of faceting, namely the introduction of {101} facets that act as electron transfer mediator is relevant only for co-catalyst-free TiO2 surfaces.

20.
Small ; 18(2): e2104892, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741416

RESUMO

In the present work the authors show that anodic TiO2 nanotubes (NT) show excellent harvesting properties for Pt single atoms (Pt SAs) from highly dilute Pt solutions. The tube walls of anodic nanotubes, after adequate annealing to anatase, provide ample of suitable trapping sites-that is, surface Ti3+ -Ov (Ov : oxygen vacancy) defects that are highly effective to extract and accumulate Pt in the form of SAs. A saturated (maximized) SA density can be achieved by an overnight immersion of a TiO2 NT layer to a H2 PtCl6 solution with a concentration that is as low as 0.01 mm Pt. Such TiO2 NTs with surface trapped Pt SAs provide a maximized high activity for photocatalytic H2 generation (reaching a turnover frequency (TOF) of 1.24 × 106 h-1 at a density of 1.4 × 105 Pt atoms µm-2 )-a higher loading with Pt nanoparticles does not further increase the photocatalytic activity. Overall, these findings show that anodic TiO2 nanotubes provide a remarkable substrate for Pt extraction and recovery from very dilute solutions that directly results in a highly efficient photocatalyst, fabricated by a simple immersion technique.


Assuntos
Nanopartículas , Nanotubos , Catálise , Nanotubos/química , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...